

Energy cannot be created nor destroyed; it can only change form.

HOW TO TRANSMIT ENERGY?

Convection

- through the movement of a fluid

Conduction

- through direct contact

Radiation

- by electromagnetic waves

Electromagnetic Spectrum

AM FM TV Cell Phones Radar TV Remote

IONIZING

VISIBLE SPECTRUM

NON-IONIZING

Ultraviolet

е

d

X-rays

Gamma rays

IONIZING

EM waves greatly differ depending on their wavelength.

WIEN'S DISPLACEMENT LAW

GRAPH ANALYSIS QUESTION

18

Transmission through glass plate

• Without the greenhause lasted to the average should be -18°C. 10

1. transmission, absorption and reflection depend on the <u>material</u> of the barrier and the <u>wavelength</u> of the EM wave

2. the Earth mostly radiates in the <u>infrared</u> part of the EM spectrum

3. the Sun mostly radiates in the <u>visible</u> part of the EM spectrum

QUESTION

How do we know that the Earth doesn't radiate greatly within the visible part of the spectrum?

Hint: No math! Rely on your everyday experience and what you can('t) see!

ANSWER

If Earth did in fact radiate with high intensity within the visible spectrum, we would see it glow at night!

(MATH) QUESTION

At what wavelength (in nm and mm) does the Earth's intensity of radiation peak?

Instructions: We're doing a rough estimate! Take the temperature of the Earth to be 20°C \approx 300 K, and the Wien's displacement constant b \approx 3 \times 10⁻³Km.

ANSWER

$$\lambda_{max} = \frac{b}{T} = \frac{3 \times 10^{-3} \, Km}{300 \, K} = 10^{-5} \, m =$$

 $= 0,01 mm = 10\,000 nm$

GREENHOUSE GASES					
		Global Warming Potential after			
F L U O R I N A T E D	Name	Chemical formula	20 years	100 years	500 years
	Carbor	\ & ohat	is the mo	ost widesp	oread
	Met.	green	hou s e ga	IS? 25	7,6
	Nitrous oxide	Answ	er: 2890	298	153
	Carbon tetrafluoride	CF ₄	5 210	7 390	11 200
	Sulfur hexafluoride	SF ₆	16 300	22 800	32 600
	Nitrogen trifluoride	NF ₃	12 300	17 200	20 700

Greenhouse gases have a different Global Warming Potential (GWP).

CARBON 'FUN' FACTS

- X A Big Mac's carbon footprint is equal to driving a car around 12.5 km.
- X Permafrost contains 65% more carbon than the atmosphere. If it melts the released carbon can worsen climate change.
- X Food production produces 19 times more carbon than the commercial aviation industry.

EXPERIMENT TIME

Greenhouse effect in a plastic bottle

THANKS!

Any questions?

LITERATURE

Flaticon.com Vecteezy.com space.fandom.com K. B. Krauskopf, A. Beiser. The Physical Universe (11th Ed.), McGraw-Hill, 2006. Gall, Hermenegildo, et al. Geo 3, Zagreb, Školska knjiga, 2020. http://rohitkt.blogspot.com/2018/11/heat-conduction.html https://smart-ri.hr/defendershield-electromagnetic-spectrum-2/?lang=en http://chriscolose.wordpress.com/2010/02/18/greenhouse-effect-revisited/ https://earth.org/data_visualization/11-interesting-facts-about-climatechange/ https://nsidc.org/cryosphere/frozenground/methane.html https://www.newscientist.com/article/2290068-food-production-

emissions-make-up-more-than-a-third-of-global-total/